Software Requirements Specification

for

Black Box

Version 3 approved

Prepared by Brian Hinds

Computer Universal Technology Systems

March 27, 2019

Table of Contents

Table (of Contents	2	
	ion History		
	ntroduction		
1.1	Purpose		
1.2	Document Conventions		
1.3	Intended Audience and Reading Suggestions		
1.4	Product Scope		
1.5	References		
2. Ov	verall Description	5	
2.1	Product Perspective		
2.2	Product Functions	5	
2.3	User Classes and Characteristics		
2.4	Operating Environment	6	
2.5	Design and Implementation Constraints	6	
2.6	User Documentation	6	
2.7	Assumptions and Dependencies	6	
3. Ex	xternal Interface Requirements	7	
3.1	User Interfaces	7	
3.2	Hardware Interfaces	8	
4. In	nternal Interface Requirements	9	
4.1	Software Interfaces		
4.2	Presence Sensor Architecture Plugin Interface	10	
4.3	Thermostat Sensor Architecture Plugin Interface	11	
4.4	Fitness Tracker Architecture Plugin Interface		
4.5	Communications Interfaces	13	
5. Sy	ystem Features	14	
5.1	System Feature	14	
6. Ot	ther Nonfunctional Requirements	15	
6.1	Performance Requirements		
6.2	Safety Requirements	15	
6.3	Security Requirements	15	
6.4	Software Quality Attributes	16	
6.5	Business Rules	16	
7. Ot	ther Requirements		
	Appendix A: Glossary		
	ndix B: Analysis Models		
	ndix C: Document Change History		

Revision History

Name	Date	Reason for Changes	Version
Brian Hinds	12/07/2018	Transparency of features and use cases	1.1
Brian Hinds	01/30/2019	Features and architecture plugins reassessed	1.2
Brian Hinds	03/27/2019	Change of core device for Black Box	3

1. Introduction

1.1 Purpose

The purpose of this software requirement specification document is to describe the scope of the Black Box device operation. The Black Box is a research data collection solution that securely collect anonymous user data for research and development. These data shall be collected from smart radio thermostat, presence sensors, and Xiaomi Mi Band 2.

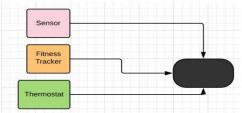
1.2 Document Conventions

This document is done in an Arial font style with three different font size, separating the heading which is 18, sub-heading which is 14 and information for each category which is 11.

1.3 Intended Audience and Reading Suggestions

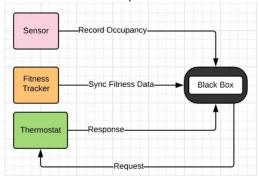
The intended audience of this document are the individuals who collaborate to the development of the Black Box project. These are the project manager, project monitor, project sponsor, and project developer. This software requirement specification document contains the overall description of the device, the hardware and software interface, the device system features and constrains, and the nonfunctional requirements follow by an analysis model with case diagrams.

1.4 Product Scope


The software for the Black Box shall be designed to communicate with the different devices which is used to gather the anonymous user data. The software shall allow these communications to be conducted on isolated network connection and Bluetooth connection. The Black Box software shall allow the research data to be stored locally until the research period has expired, that can be exported to s server for analyzing.

1.5 References

There are no known other document and sources that contains reference data, image, diagrams, and information that is refer in this document. All information that are within is as is.


2.1 Product Perspective

The Black Box project is a capstone project that have been selected for execution. This project idea was created be the team of researchers at the University of Waterloo Ubilab. The undertake of this project allows the capstone to be a collaboration between Conestoga College and the University of Waterloo. This project is a new device and not a redesign, remake, or a second interval of a previous model. This device shall be designed to collect anonymous user data from devices and store it locally.

2.2 Product Functions

The Black Box function is to record and store fitness tracker data, record and store the presence sensors' data, and to request temperature, humidity, and operation status from Radio thermostat and record the response. Further details shall be provided in section 3.

2.3 User Classes and Characteristics

User Classes	Characteristics
Final user	The one who will receive the kit to use in their home
Technician	Responsible to setup the kit/box before send to the final user
Technician	Responsible for collecting the data when the kit is returned
Researcher/Data Analyst	Responsible for analyzing the data collected

The Black Box is designed to operate in the home environment as well as few of its data collecting accessories. The Black Box will be design around the x86 architecture, the code base will be C-Sharp .Net. The Black Box will have a Black Box Sync application that will collect user anonymous data from the accessories and store it locally. The operating system will be Microsoft Windows 10 and will allow the Black Box to be configured to be a close secure server for the research data collected. The data collecting accessories are the Radio Thermostat CT80, the selected fitness tracker, and Black Box Presence Sensors that shall be design using the NodMCU embedded device, for recording user movements and room occupancy, temperature, and humidity.

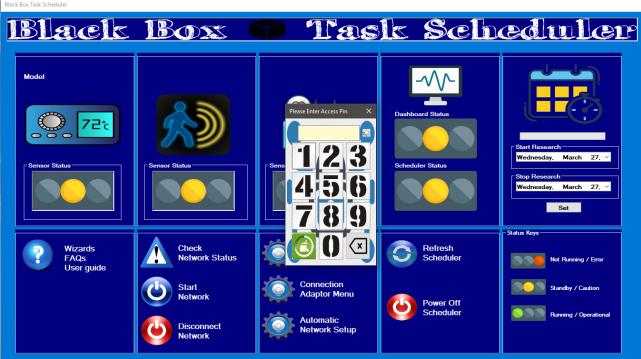
2.5 Design and Implementation Constraints

The constraints of the Black Box are the limited to number hardware architectures in which the application can operate on these includes ARM and other hardware architecture that cannot emulate the x86 architecture. Other constraints are selecting accessories that can operate within the design requirements of the Black Box. Most smart IOT devices require direct access to the internet to convert and store user data, this defeat the purpose of the Black Box operation scope. This results in only a selected number of accessories that falls within the Black Box requirements and they are documented within this SRS document. The application design use for the Black Box is C-Sharp .Net and therefore is limited to certain operating system, this limits the operation capability on another operating system such as Linux, Raspberian and other none x86 base operating systems. The user of the Black Box has the responsibility to ensure that data are sync timely from their fitness tracker to the Black Box by being in range at least once every 12 hours. The other accessors will auto sync and data collected.

2.6 User Documentation

The user will be provided with a simple guide manual which will instruct them on where and how to place accessories in their home, how to check the Black Box status to ensure data collection is operating seamlessly. This manual will be distributed in hard copy and will be included in the Black Box research kit.

2.7 Assumptions and Dependencies

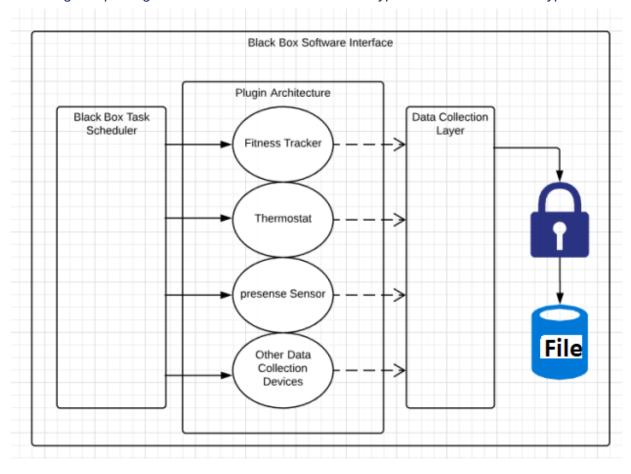

- Not all accessories may send data to the Black Box at a timely matter.
- Location placement of sensors and material structure of the user home may affect the range and delay of data gathering by the Black Box.

There are no known dependencies the project has on external factors, such as software components that has been intending to reuse from another project.

3. External Interface Requirements

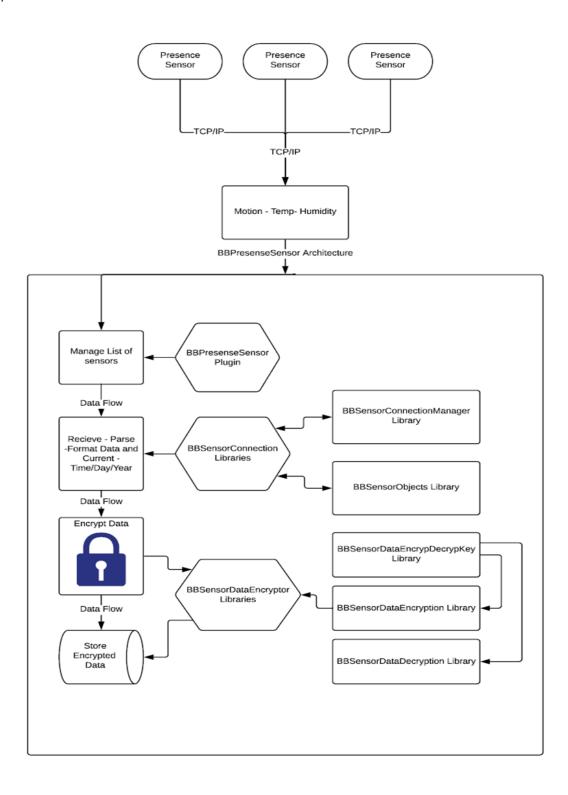
3.1 User Interfaces

The Black Box shall have several software that shall allow it to operate and communicate with the sensors, fitness tracker and thermostat. The Microsoft Windows 10 operating system is the operating environment for the Black Box; this shall allow the hardware interface with the built-in network adaptor and Bluetooth adaptor that shall allow the collection of data from the surrounding connected devices. The hardware interface shall allow the Black Box to create a closed wireless network for the sensors and thermostat to connect and synchronize anonymous user data.

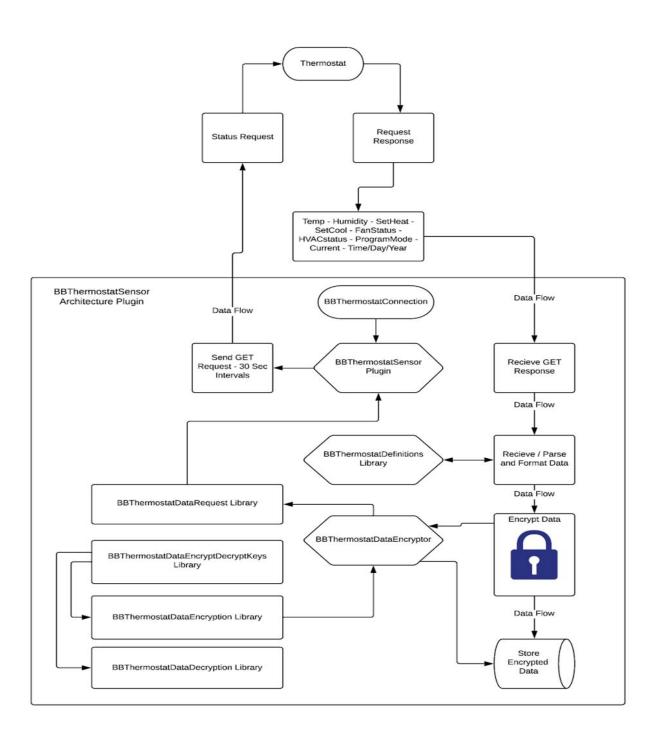


4. Internal Interface Requirements

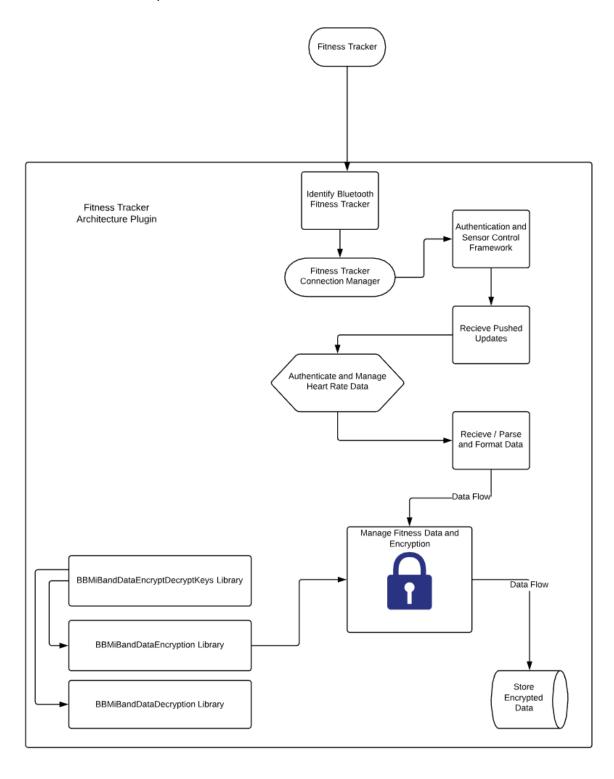
4.1 Software Interfaces


The Black box operating system shall be Microsoft Windows 10. The research date shall be stored in an encrypted file on the Black Box and then shall be transferred by researcher to the server at the lab that shall be running SQL Server version 2017.

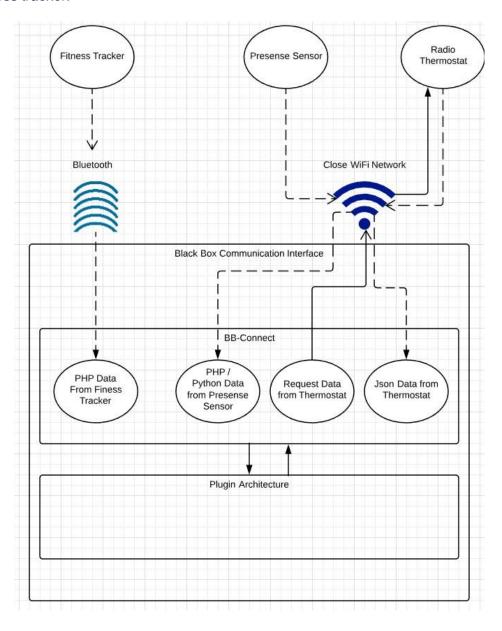
The Black Box software interface consist of three sections, the task scheduler, the plugin architecture, and the data collection layer. Each of these section works together but modular enough to be independent of each other in operation. The task scheduler determines how and when the plugin architecture operates. The plugin architecture is a set of plugins for each of the connected devices, these plugins manages the connection, data requests, and the management of multiple and new devices that are connected. The data collection layer manages the incoming data by formatting and placing it in a certain order for it to be encrypted and save to an encrypted file.


4.2 Presence Sensor Architecture Plugin Interface

The Black Box Presence Sensor architecture plugin (BBPresenceSensor) uses TCP/IP protocol to relay sensor information to the Black Box. The plug has a modular design that interconnect with different parts architecture and each has its own function.


4.3 Thermostat Sensor Architecture Plugin Interface

The Black Box Thermostat Sensor architecture plugin (BBThermostatSensor) uses REST service of GET and POST to manage data to and from the thermostat unit. The plug has a modular design that interconnect with different parts architecture and each has its own function. The plugin uses the GET protocol to log the thermostat current status.


4.4 Fitness Tracker Architecture Plugin Interface

The Black Box Fitness Tracker architecture (MiBand-Heartrate) uses Bluetooth connectivity to pair with Black Box and push updated heartrate notifications. The plug has a modular design that interconnect with different parts architecture and each has its own function.

4.5 Communications Interfaces

The communication interface for the Black Box shall be based on the two method of communication that the Black Box shall allow. The closed wireless network shall allow network communication of presence sensors over TCP/IP and thermostat to communicate over REST protocol for data collection. The thermostat along with the BBThermostatConnection library uses a Rest protocol that response to the requested data in Json format. The presence sensors along with the BBSensorConnection library shall receive data in string format. Due to the nature of the data that is been collected and the close network setup of the Black Box, there is no major requirement of any encryption during communication, but after the data is receive it is encrypted and stored. The other communication interface is Bluetooth; this shall be managed by the BLEManager and shall allow the ControlFrame application to communicate and synchronize user data with the selected fitness tracker.

5. System Features

This section shall describe the requirements for the Black Box by system features, the major services provided by the Black Box.

5.1 System Feature

4.1.1 Description and Priority

Feature	Description	Priority
BBThermostatSensor	Send request and receive data from thermostat	High
MiBand	Synchronize user's fitness data from fitness tracker	High
BBPresenceSensor	Collects user occupancy data from presence sensors	High
Backup Battery Power	Operate on backup power during hydro interruption	Medium
Close Network Communication	Communicate with connected devices on close network	High
LCD Touch Screen	Allow technician interaction and operating status display	Low
Local Encrypted Data Storage	Stores and encrypt data collected locally on unit in a file	Medium

4.1.2 Stimulus/Response Sequences

Stimulus	Response Sequences
User's Daily Fitness Activity	Fitness tracker data is synchronized once in range of Black
	Box
User's Room Occupancy, Movements,	Occupancy, movement, temperature, and humidity data are
Temperature, and Humidity	sent to Black Box over network
User's Configuration and Operation of	Timely status request is sent, and response receive by Black
Thermostat	Box

4.1.3 Functional Requirements

Functional Requirements	Detail
User's Data synchronization of fitness tracker	The BBFitnessTracker application must be present and running to carry out the services provided by this feature, or to execute
	this use case
User's Room Occupancy and Movements	The BBPresenceSensor application must be present and
recorded by presence sensors	running to carry out the services provided by this feature, or to
	execute this use case
User's Configuration and Operation of Smart	The BBThermostatSensor application must be present and
Radio Thermostat	running to carry out the services provided by this feature, or to
	execute this use case
The managing of architecture and scheduling	The BBTasker application must be present and running to carry
of plugins operation	out the services provided by this feature, or to execute this use
	case
Secure Data from User Tampering	Password panel that requires a pin to make changes.
Fitness tracker to be use	Mi Band 2

6. Other Nonfunctional Requirements

6.1 Performance Requirements

Individual Functions	Performance Requirements
User's Data synchronization of fitness tracker	Fitness tracker shall be able to connect and reconnect to Black
	Box Bluetooth once in range. The interval of data
	synchronization shall be every 12 to 24 hours.
User's Room Occupancy, Movements,	The presence sensors shall be able to maintain a connection
Temperature, and Humidity recorded by	with the Black Box on the closed wireless network and send data
presence sensors	to the Black Box when motions are detected from user.
User's Configuration and Operation of Smart	The Black Box shall be able to request Radio thermostat status
Radio Thermostat	in intervals of 60 second and record the results.
The Storing and queries of anonymous user's	The Black Box shall be able to store the recorded information
data collected	inherited from the fitness tracker, presence sensors, and Radio
	thermostat application and store it in a database.
The Setup and Resynchronization of devices	The Black Box shall be able to handle reconnection of devices
	without user interaction in case of an operation or connection
	error

6.2 Safety Requirements

Requirements that are concerned with possible loss, damage, or harm that could result from the use of the Black box.

Safety Concerns	Safeguards
Data loss due to power surge	The Black Box shall be equipped with a backup charging circuit and a
	battery with an estimate of 6 hour of power.
Fall and Damage	The Black Box shall be design with a housing that will protect the core
	operating circuit of the device in cause of a fall.
Corrupt Data Base	The Black Box shall be designed to store collect data in .bb file format
	as a backup of the actual database.
User Tampering	The interface of the Black Box shall not allow user to stop, interface,
	or tamper with research process and research data due user access
	level.
Privacy of Data	Data collected by The Black Box shall be encrypted by storing the
	data

6.3 Security Requirements

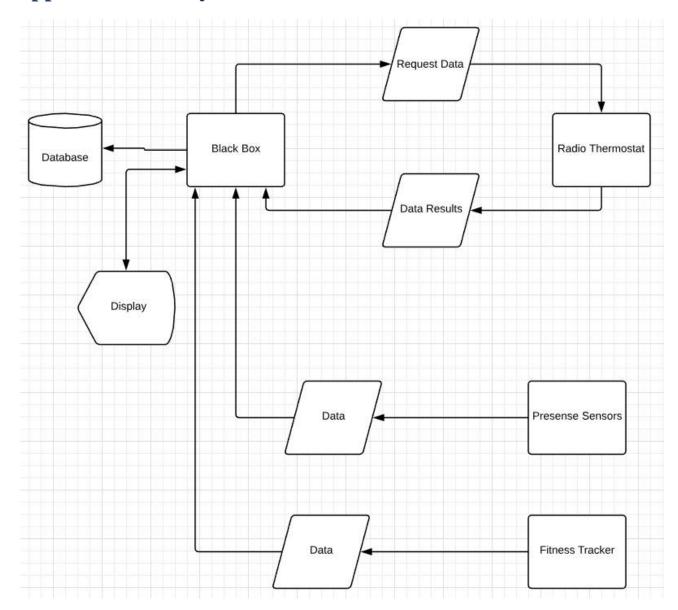
The Black Box shall not collect or store sensitive user data, but it shall encrypt and store the collected data; therefor there shall be requirements regarding security or privacy issues surrounding use of the Black Box and protection of the data used or created by the Black Box. The data collected shall remain inaccessible to user and shall only be accessible only by a technician when transfer and decrypted.

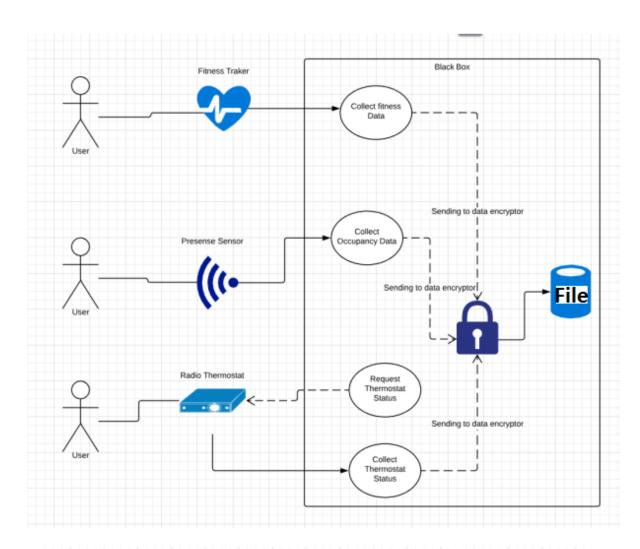
6.4 Software Quality Attributes

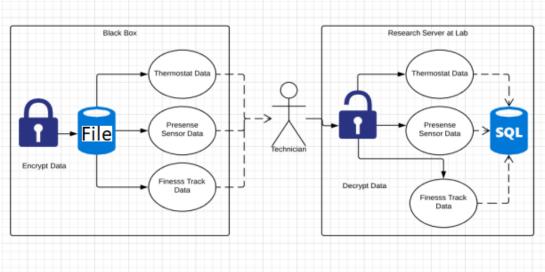
Adaptability	The Black Box shall have the ability to be modify and adopt to new technology for
	research purposes.
Availability	The Black Box shall be available to users who wishes to participate and contribute
	research and development.
Correctness	The Black Box shall be design meticulously to operate with minimum chance for error.
Flexibility	The Black Box shall be designed to withstand wear and tear.
Interoperability	The user data collected by the Black Box shall be stored in a format that is interoperable.
Maintainability	The Black Box maintainability shall be seamless and shall only be carried out by the technician.
Portability	The Black Box hardware fall under the possibility of being portable whereas the
	software of the Black Box is currently constraining to the Black Box
Reliability	The Black Box shall be designed to operate and collect accurate data from the attach
	devices. The Black Box shall be designed to operate with minimum change of down time.
Reusability	The Black Box shall be designed to be reuse more than once until end of life of the Black
	Box
Robustness	The Black Box shall be design to with stand shock and drop up to approximately 5 feet
Testability	The Black Box shall be designed to perform self-test and diagnostic.
Usability	The Black Box shall be designed to be user friendly and shall require minimum user
	interaction to operate efficiently.

6.5 Business Rules

Setup Black Box	Only assign technician can perform this task
Setup Accessories	Only assign technician can perform this task
Sensor Placement	The user shall determine the appropriate location base on the Black Box manual
Thermostat	The user shall be responsible for installing thermostat to their HVAC system
Black Box Retrieval	Only assign technician can perform this task
Black Box Faults	Only assign technician can address this fault if Black Box is unable to self-repair


7. Other Requirements


There are no other requirements not covered elsewhere in the SRS.


Appendix A: Glossary

Terms	Definitions
BB	Black Box
DB	Data Base

Appendix B: Analysis Models

Appendix C: Document Change History

Version 1.1	
Use case modules were added to explain data interface	
Use case modules were added to explain user interface	
Version 1.2	
BBPresenceSensor Architecture diagram added	
BBThermostatSensor Architecture diagram added	
Method of saving data to Black Box which are encrypted data	
Capable fitness tracker to be determine	
Version 3	
Black Box fitness tracker devices are now defined to the Mi Band 2 only	
Black Box Application is now defined to operate on x86 architecture	